	USN										
--	-----	--	--	--	--	--	--	--	--	--	--

17EC71

(04 Marks)

Seventh Semester B.E. Degree Examination, Feb./Mar. 2022 **Microwaves and Antennas**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- With neat diagrams, explain the concept of reflex system. (10 Marks) 1
 - Calculate the transet time at the cavity gap, transit angle and velocity of electron leaving the gap for 2- cavity klystron that operates at 4GHz with a DC beam voltage of 5kV and 2mm cavity gap.
 - c. Define VSWR.

- Obtain the transmission line equations from fundamentals. 2 (10 Marks) a. A transmission line has a resistance of $2\Omega/m$ with an inductance value of 8n H/m.
 - The conductance of the line is 0.5m mho/m and capacitance is 0.23p.F. f = 1GHz. Find the characteristics impendence of the line and the propagation constant.
 - What is a Smith chart? Explain the different measurement that can be determined using a (06 Marks) smith chart?

Module-2

- Explain the properties of S parameters as applicable to a microwave network. (10 Marks)
 - Write short notes on:
 - Coaxial connectors and adapters
 - ii) Attenuators.

(10 Marks)

OR

- What is a Magic Tee? Explain its properties. Also determine its S-matrix. (10 Marks)
 - Explain a directional coupler and write its S-matrix.

(10 Marks)

- Module-3 A certain microstripline has the following parameters.
 - w = 10mils [Note: 1mil = 0.0254mm]. Calculate the $\varepsilon_r = 5.23$ h = 7 mils t = 2.8 mils characteristic impedance of line (Z_0) . (04 Marks)
- Explain a parallel strip line, with neat diagram and relevant equations.
- (06 Marks)

- c. Define the following:
 - Radiation Intensity i) ii) Aperture of Antenna
 - iii) Beam area
 - iv) Directivity
 - Reduction pattern.

(10 Marks)

OR

Derive Friis transmission formula.

- (08 Marks)
- Compute the power received by an antenna in case of transmission over a distance of 150km at 500MHz. When gain G of antennas used are both 25dB. ($P_T = 200W$). (06 Marks)
- Obtain a relationship between directivity and effective aperture.

(06 Marks)

(06 Marks)

Module-4 Plot the field pattern for an array of 2 isotropic sources with equal amplitude and same (07 Marks) phase. Take $d = \lambda/2$. Find Directivity of a source with a sine squared pattern (doughnut) (power pattern). (07 Marks) (06 Marks) State and explain power theorem. Obtain the field pattern for a linear uniform array of isotropic antennas for n = 6, $d = \frac{\lambda}{2}$, (08 Marks) $\partial = -d_r$ Obtain an expression for radiation resistance of a short dielectric dipole. (06 Marks) Define and explain the principle of pattern multiplication. (06 Marks) Module-5 From fundamentals obtain the radiation resistance of a small loop antenna. (08 Marks) For a horn antenna, explain the horn antenna optimum dimensions. Explain with an (06 Marks) example. Explain the principle of working of a parabolic Reflector antenna. (06 Marks) Define helix geometry. Explain the practical design considerations for the monoflex axial 10 (06 Marks) mode helical antenna. b. Explain the principle of a Yagi Uda Array Antenna. (08 Marks)

Calculate the directivity of a horn antenna with $a_e \lambda = 10\lambda$ a_H